2021湖南理工学院数学分析研究生考试大纲的内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站。或下载我们的APP和微信公众号(里面有非常多的免费考研资源可以领取哦)[2021湖南理工学院中国现代文学史研究生考试大纲][2021湖南理工学院文学概论研究生考试大纲][2021湖南理工学院中国文化概论研究生考试大纲][2021湖南理工学院写作研究生考试大纲][2021湖南理工学院古代汉语研究生考试大纲][2021湖南理工学院外国文学史研究生考试大纲]
为你答疑,送资源
95%的同学还阅读了:[2021湖南理工学院研究生招生][湖南理工学院研究生分数线[2013-2020]][湖南理工学院王牌专业排名][湖南理工学院考研难吗][湖南理工学院考研群][湖南理工学院研究生学费][湖南理工学院研究生奖学金][湖南理工学院研究生辅导][湖南理工学院在职研究生招生简章][考研国家线[2006-2020]][2021年考研时间:报名日期和考试时间]
2021湖南理工学院数学分析研究生考试大纲正文
20 2 1 年硕士研究生入学考试 自命题科目 考试大纲考试科目代码:[601]
考试科目名称: 数学分析
一、考核目标
(一)考查考生对数学分析的基本概念、基本理论、基本内容、基本方法和基本思想的掌握程度。
(二)考查考生运用数学分析理论知识分析和解决实际问题的能力。
二、试卷结构
(一)考试时间:180分钟,满分:150分
(二)题型结构
解答题(包括证明题)10小题,每小题15分,共150分
三、 答题方式
答题方式为闭卷 笔试
四、考试内容与考试要求
1、极限论
考试内容
① 各种极限的计算; ② 单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理等实数基本理论的灵活应用; ③ 连续函数特别是闭区间上连续函数性质的运用; ④ 极限定义的熟练掌握等.
考试要求
(1)能熟练计算各种极限,包括单变量和多变量情形.
(2)能熟练利用六个实数基本定理尤其是单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理进行各种理论证明.
(3)能熟练掌握单变量连续函数特别是闭区间上连续函数的各种性质,并能利用这些性质进行计算和证明;掌握多变量连续函数的性质尤其是有界闭域上连续函数的性质,能利用这些性质进行计算和证明.
(4)熟练掌握各种极限的定义,并能用逻辑术语进行理论证明.
2、单变量微分学
考试内容
微分中值定理(包括Roll定理、Lagrange中值定理、Cauchy中值定理等)
的灵活运用(包括单调性讨论、极值的求取、凸凹性问题、等式和不等式的证明等); ② Talor公式的灵活运用(包括用Lagrange余项形式证不等式、用Peano余项形式估计阶以及求极限等);③ 各种形式导数的计算; ④ 导数的定义和运用等.
考试要求
(1)熟练掌握微分中值定理,包括Roll定理、Lagrange中值定理、Cauchy中值定理的条件和结论,能熟练利用这些定理进行理论证明或计算,包括函数单调性讨论、极值的求取、凸凹性问题的讨论、等式和不等式的证明等.
(2) 熟练掌握Talor公式的条件和结论,并能做到灵活运用,尤其是利用Lagrange余项形式证不等式、Peano余项形式估计阶以及求极限等.
(3)熟练掌握复合函数导数的计算和高阶导数的计算.
(4)熟练掌握导数的定义和性质,能用逻辑语言进行理论证明,熟练掌握利用导数定义进行证明或计算.
3、单变量积分学
考试内容
各种不定积分和定积分的熟练计算,尤其是计算中的处理技巧;② 广义
积分的计算和敛散性判别; ③ 定积分的定义和性质的灵活运用等.
考试要求
(1)熟练计算各种不定积分、定积分,熟练掌握凑微分法、换元法、分部积分法以及常用的计算技巧,熟练掌握奇偶函数、周期函数的积分特点.
(2)熟练掌握广义积分的计算,熟练掌握区间无限型、函数无界型以及混合型广义积分的敛散性判别,并能进行理论证明.
(3)熟练掌握定积分的定义,能利用定积分的定义进行极限的计算,熟练掌握定积分的性质,并能利用这些性质进行理论证明,掌握常用可积函数类.
4、级数论
考试内容
各种数项级数尤其是正项级数的敛散性判别;② 数项级数的性质;③ 函数列和函数项级数的一致收敛性判别,给定函数Fourier级数的展开和特殊点的收敛性;④函数列和函数项级数一致收敛性质的灵活运用 ;⑤幂级数的收敛性和展开等知识的熟练掌握.
考试要求
(1)熟练掌握级数的敛散性判别,尤其是正项级数和交错级数敛散性判别.
(2)掌握数项级数的一些常用性质,尤其是绝对收敛级数与条件收敛结束的常规性质.
(3)熟练掌握函数列和函数项级数一致收敛性的判别,尤其是用定义、优级数判别法、Abel判别法、Dirichlet判别法判别函数项级数的一致收敛性,熟练掌握给定函数的Fourier展开,能给出Fourier级数在特殊点的收敛性.
(4)熟练掌握函数列和函数项级数一致收敛性的性质运用,包括连续性、可积性和可微性,能利用这些性质进行理论证明.
(5)熟练掌握幂级数收敛区间的求法,熟练掌握常规函数的幂级数展开,并掌握一些特殊幂级数和函数的求法.
5、多变量微分学和参变量积分
考试内容
① 可微的定义; ② 求复合函数以及隐函数的偏导数; ③ 多元函数极值理论; ④ 参变量积分的一致收敛性判别; ⑤ 参变量积分的计算; ⑥ 参变量积分一致收敛性质的运用等.
考试要求
(1)掌握多元函数可微的定义,能熟练利用定义证明某些常规函数的可微性,掌握多元函数可微、连续、可求偏导之间的关系.
(2)熟练掌握多元函数复合函数求偏导数尤其是高阶偏导数,掌握方程或方程组确定的隐函数偏导的计算.
(3)熟练掌握多元函数极值的计算,并能计算有界闭域上连续函数的最值..
(4)熟练掌握含参变量广义积分一致收敛性的判别.
(5)熟练掌握含参变量常义积分和广义积分的计算.
(6)熟练掌握含参变量常义积分和广义积分的连续性、可积性和可导性,并能利用这些性质进行计算和证明.
6、多元积分学
考试内容
①二重积分、三重积分的计算; ② 格林公式、高斯公式的灵活运用;③两类曲线积分、两类曲面积分的计算;④ 各种积分之间的相互关系等
考试要求
(1)熟练掌握二重积分、三重积分的计算,熟练掌握降维、换元法,尤其是极坐标、球坐标变换.
(2)熟练掌握Green公式、Gauss公式的条件和结论.
(3)熟练掌握第一类和第二类曲线积分和曲面积分的计算.
(4)掌握平面曲线积分与路径无关的条件,熟练掌握利用Green公式求第二类曲线积分、利用Gauss公式求第二类曲面积分、利用Stokes公式求空间第二类曲线积分..
五、主要参考书目
[1] 华东师范大学数学系编. 数学分析 高等教育出版社, 2001
[2] 裴礼文编. 数学分析中的典型问题和方法. 高等教育出版社,2006
本文来源: http://m.okaoyan.com/hnist/cankaoshumu_409181.html