2021石家庄铁道大学数学分析研究生考试大纲

发布时间:2020-12-14 编辑:小莉 推荐访问:
2021石家庄铁道大学数学分析研究生考试大纲

2021石家庄铁道大学数学分析研究生考试大纲内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的APP和微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)

2021石家庄铁道大学数学分析研究生考试大纲 正文

《数学分析》考试大纲

一、考试的总体要求
本门课程主要考察学生对数学分析基础知识(包括基本概念、基本理论、基本运算及方法)、基本思想和方法的掌握程度。要求考生具有抽象思维能力、逻辑推理能力、运算能力以及运用已掌握的知识分析和解决问题的能力。
二、考试的内容及比例
1、分析基础(占15%左右)
(1) 了解实数公理,理解上确界和下确界的概念及确界原理。掌握绝对值不等式及平均值不等式。
(2)  熟练掌握函数概念。
(3) 掌握数列极限的意义、性质和运算法则,熟练掌握用定义证明数列极限存在的方法。
(4) 掌握函数极限的意义、性质和运算法则, 熟练掌握求函数极限的方法。
(5) 熟练掌握求数列极限和函数极限的常用方法。
(6) 理解无穷大量和无穷小量的意义,了解同阶和高(低)阶无穷大(小)量的意义。
(7) 熟练掌握函数在一点及在一个区间上连续的概念,理解函数两类间断点的意义,掌握初等函数的连续性。理解一致连续和不一致连续的概念。
(8) 掌握数列收敛的充分必要条件及函数极限(当自变量趋于有限数及趋于无穷两种情形)存在的充分必要条件。
2、 一元微分学(占20%左右)
(1) 掌握导数的概念和几何意义,了解单侧导数的意义,依据定义求函数在给定点的导数。
(2) 熟练运用求导公式和求导法则计算函数导数(包括用参数式给出的函数的导数)、
复合函数的导数以及函数的高阶导数。
(3) 理解函数微分的概念和函数可微的充分必要条件,了解一阶微分形式不变性,能
用微分作近似计算。
(4) 理解并掌握微分中值定理(Rolle定理,Lagrange定理和Cauchy中值定理),
能应用它们解决函数零点存在性及不等式证明等问题。
(5) 熟练掌握应用L’Hospital法则求函数极限的方法。
(6) 理解Taylor公式的意义,并熟记五个基本公式(x=0点的带有Peano余项的Taylor公式),能将给定函数在指定点展成Taylor级数,掌握应用Taylor公式解决不等式证明、求函数极限等问题的基本技巧。
(7) 熟练掌握应用导数判断函数单调性、凹凸性的方法,以及求一元函数极值和最值的方法。了解函数图像的画法。
3、一元积分学(占20%)
(1) 理解不定积分概念和基本性质,熟记基本积分表,理解并掌握换元法和分部积分法的意义和方法,能够利用它们熟练计算不复杂的不定积分。
(2) 了解可积分函数的意义及其积分法,熟练掌握有理函数、三角函数有理式及简单的根式的有理式的积分方法。
(3) 理解定积分的概念,掌握定积分的基本性质及函数在有限区间上可积的充分必要条件,熟练掌握定积分的计算方法。了解变限定积分的性质,掌握积分中值定理。
(4) 熟练应用定积分计算平面曲线弧长、平面图形面积、立体体积、旋转曲面表面积,并解应用于求均匀平面图形重心坐标等简单物理、力学问题。
(5) 理解广义积分及其收敛、绝对收敛和发散的意义,掌握广义积分收敛的判定法则。
4、级数(占15%左右)
(1) 掌握数项级数收敛、发散和绝对收敛的概念、级数收敛的充分必要条件(Cauchy准则),收敛和绝对收敛级数的性质以及级数加法和乘法的运算法则。
(2) 熟练掌握正项级数敛散判别法(比较判别法、D’Alembert判别法、Cauchy根式判别法以及Cauchy积分判别法),掌握一般项级数敛散判别方法。能计算一些特殊数项级数的和。
(3) 理解函数项级数收敛的意义并能确定其收敛域。理解函数数列一致收敛以及函数项级数一致收敛的意义,掌握函数项级数一致收敛的判别法则(Cauchy一致收敛准则,Weierstrass判别法,Abel判别法,Dirichlet判别法)及一致收敛级数的性质。
(4) 理解幂级数的概念并能确定其收敛半径。掌握幂级数的基本性质和运算法则,熟记五个基本幂级数展开式()。能求出给定函数在指定点的幂级数展开式及应用幂级数运算求一些级数的和。
(5) 理解函数Fourier展开式的意义,掌握求Fourier展开式的基本方法。了解Fourier级数的收敛性定理、逐项积分和逐项求导定理以及Parseval等式,并能应用Fourier级数求某些级数的和。
5、多元微分学(占15%左右)
(1) 理解多元函数的概念。掌握多元函数的极限、累次极限和特殊路径极限的意义,并能根据定义计算多元函数极限,或证明二元极限不存在,能计算多元函数的全面极限和累次极限。
(2) 理解多元连续函数的概念,掌握其性质,并能判断多元函数的连续性。了解多元函数的一致连续性。
(3) 理解偏导数的概念,掌握其计算法则,能熟练计算函数的偏导数和复合函数的导函数,能计算函数在给定方向上的导函数。
(4) 理解多元函数的微分的概念,并能判断函数的可微性。
(5) 理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。
(6) 理解Taylor公式的意义,并能求出二元函数的具有指定阶数的Taylor公式。
(7) 能应用偏导数求空间曲线的切线、法平面及空间曲面的法线和切平面的方程。
(8) 理解多元函数的极限和最值的意义、极值的必要条件和充分条件,掌握求多元函数极值、条件极值及在闭区域上的最值的方法,并用于解决实际问题。
6、多元积分学(占15%左右)
(1) 理解重积分的概念、可积的充分必要条件及重积分的性质。
(2) 掌握二重积分和三重积分化累次积分的方法以及二重、三重积分的变量代换方法(特别,平面极坐标变换,空间柱坐标和球坐标变换),能熟练计算二重和三重积分,并用于计算平面图形面积、柱体体积、曲面面积及曲面所围的立体体积。了解n重(n>3)积分的计算方法(化为累次积分及变量代换)。
(3) 了解二重、三重广义积分的意义(无界域情形和不连续函数情形),掌握它们的基本判敛法和基本计算方法。
(4) 了解含参变量的正常积分的基本性质(连续性,积分号下取极限、求导和求积分),了解含参变量的广义积分一致收敛性的意义及其基本性质(连续性,积分号下取极限、求导及求积分),掌握其一致收敛判别法,了解函数。
(5) 理解第一型和第二型曲线积分的意义、性质、实际背景及二者的联系,能熟练计算曲线积分。
(6) 理解并掌握Green公式的意义,并能应用它计算曲线积分。
(7) 理解第一型和第二型曲面积分的意义、性质、实际背景及二者的联系,能熟练计算曲面积分。
(8) 理解并掌握Gauss公式和Stokes公式的意义,并能用于曲面积分或曲线积分的计算。了解空间曲线积分与路径无关的充分必要条件及其对曲线积分计算的应用。
(9) 了解场的概念和保守场的意义,能计算场的梯度、散度和旋度。
 

石家庄铁道大学

添加石家庄铁道大学学姐微信,或微信搜索公众号“小站”,关注[小站]微信公众号,在小站微信号输入[石家庄铁道大学考研分数线、石家庄铁道大学报录比、石家庄铁道大学考研群、石家庄铁道大学学姐微信、石家庄铁道大学考研真题、石家庄铁道大学专业目录、石家庄铁道大学排名、石家庄铁道大学保研、石家庄铁道大学公众号、石家庄铁道大学研究生招生)]即可在手机上查看相对应石家庄铁道大学考研信息或资源

石家庄铁道大学考研公众号 小站公众号

本文来源://m.cratesaway.com/shijiazhuangtiedaodaxue/cankaoshumu_394432.html

推荐阅读