2021中国民航大学数学分析专业研究生考试大纲

发布时间:2020-11-17 编辑:小莉 推荐访问:
2021中国民航大学数学分析专业研究生考试大纲

2021中国民航大学数学分析专业研究生考试大纲内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的APP和微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)

2021中国民航大学数学分析专业研究生考试大纲 正文

1
数学分析701
一.实数与函数
考试内容
绝对值与不等式,确界原理,函数及性质
考试要求
理解和掌握邻域,有界集,上下确界函数,复合函数,反函数,有界函数,单调函数,奇
函数,偶函数概念。熟练掌握上下确界,复合函数,反函数的应用。
二.极限与连续
考试内容
数列极限定义,收敛数列的性质单调有界原理,柯西准则,函数极限概念。1, 趋于无穷
大时的极限。2, 趋于某一定数时的极限。函数极限性质。归结原理柯西准则。两个重要
极限无穷小量,无穷大量概念。无穷小量阶的比较。连续性概念。连续函数的局部性质。闭
区间上连续函数的性质。反函数连续函数。一致连续性指数函数的连续性。初等函数连续
性。区间套定理,柯西准则聚点定理,有限覆盖定理。
考试要求
理解和掌握:数列极限的定义,数列极限性质的原理及推导。单调有界原理,柯西准则及应
用。函数极限的定义。函数极限存在的归结原理连续性的定义及其证明,间断点及其分
类。连续函数的局部性质,闭区间上连续函数的性质。区间套定理,柯西准则聚点定理,
有限覆盖定理原理及证明。闭区间上的连续函数性质的原理及证明及应用。
熟练掌握数列极限定义证明,运算求极限。函数极限定义证明,运算求极限。函数极限柯
西准则及应用。两个重要极限的计算, 无穷小量,无穷大量概念,无穷小量阶的比较及应
用。一致连续性及应用。
三.导数与微分
考试内容
导数概念,导函数,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公
式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
考试要求
理解和掌握:导数概念。导数的四则运算。反函数的导数。复合函数的导数。求导法则与
公式。微分概念,微分的运算法则。高阶导数与高阶微分。参数方程的一阶及二阶导数。
四.微积分基本定理,不定式极限,导数研究函数
考试内容
中值定理。不定式极限:1 型极限。2 型极限。3 其他型极限。泰勒公式,皮亚诺余
项泰勒公式。函数的单调性与极值,函数的凸性,拐点。函数的图象讨论渐进线,作图。
考试要求
理解和掌握: 费马定理,中值定理的原理及应用。熟练计算型极限, 型极限,其他
型极限。熟练掌握泰勒公式,皮亚诺余项泰勒公式原理及应用,函数的单调性与极值,函数
的凸性,拐点。
五.积分
考试内容; 原函数不定积分运算法则。换元积分及分步积分法。有理函数的积分,三角
2
函数的积分。定积分的定义,可积必要及充分条件,可积函数类。定积分的性质原理,微积
分基本定理,换元积分法,分步积分法。非正常积分的定义,性质,判别准则。平面图形
的面积直角坐标,参数方程的计算公式。由截面面积求立体体积。弧长的定义弧长的积
分公式。:旋转曲面的面积。定积分在物理上的应用压力功重心。
考试要求
理解和掌握:不定积分的运算法则, 换元积分,分步积分法,有理函数的积分,三角函数
的积分。定积分的定义,可积必要及充分条件,可积函数类。熟练掌握定积分的性质原理,
微积分基本定理,换元积分法,分步积分法及应用。掌握非正常积分的定义,性质,熟练掌
握非正常积分判别准则。
六.级数
考试内容:级数的收敛性及发散。正项级数。1 一般判别原则。2 比较及根式判别方法。3 积
分判别方法。一般项级数。1 交错级数。2 绝对收敛。3 阿贝尔判别法。一致收敛性。1 函
数列与一致收敛性。2 函数项级数函数项级数。3 函数项级数的一致收敛性判别法。一致收
敛性函数列及函数项级数分析性质原理。幂级数。1 幂级数。2 幂级数的收敛区间2。幂级
数的性质3 幂级数的运算。函数的幂级数展开。1 泰勒级数2 幂级数的展开。
考试要求
理解和熟练掌握:级数一般判别原则,比较及根式判别方法,积分判别方法原理及使用。交
错级数, 绝对收敛,阿贝尔判别法,阿贝尔。狄里克里判别法原理及应用。函数列的一致
收敛性,函数项级数的一致收敛性判别法原理及应用。一致收敛性函数列及函数项级数分析
性质原理及应用。熟练掌握: 阿贝尔定理,收敛区间判别方法,幂级数的分析性质,泰勒
级数,幂级数的展开原理及应用。
七.傅里叶级数
考试内容:三角函数系,正交函数系, 为周期的傅里叶级数, 收敛定理, 为周期的傅里
叶级数展开,偶函数与奇函数的傅里叶级数。
考试要求
熟练掌握: 为周期的傅里叶级数展开,收敛定理证明。为周期的傅里叶级数展开。为
周期的傅里叶级数,偶函数与奇函数的傅里叶级数。
八.多元函数的极限与连续
考试内容平面点集,完备性定理,函数概念,二元函数的极限,累次极限。连续性概念,
闭域连续性的性质。
考试要求
掌握平面点集,函数概念。理解完备性定理。熟练掌握二元函数的极限的计算,累次极限
的计算。熟练掌握连续性概念,闭域连续性的性质及应用。
九.多元函数的微分学
考试内容:可微性,全微分,偏导数,可微性条件。复合函数的求导法则,复合函数的全
微分。方向导数与梯度。泰勒公式与极值, 中值定理和泰勒公式,极值问题。隐函数定理,
隐函数组定理,隐函数求导。曲线切线,曲面的法平面。
考试要求
掌握可微性,全微分,偏导数,可微性条件概念。熟练掌握复合函数的求导法则,复合函
数的全微分。理解方向导数与梯度概念。熟练掌握:高阶偏导数, 中值定理和泰勒公式, 极
3
值的充分及必要条件原理及应用。熟练掌握隐函数, 隐函数组的求导原理及应用。
十.重积分参变量非正常积分曲线积分与曲面积分
考试内容:二,三重积分概念,重积分可积条件。累次积分,换元积分,参量积分求导。
曲面面积,重心,转动惯量,引力。含参变量非正常积分判别方法,分析性质。欧拉积分
概念及性质。第一型曲线积分与第一型曲面积分概念,计算公式。第二型曲线积分概念,
计算公式。格林公式,曲线积分与路径无关。第二型曲面的侧概念,计算公式。高斯公式
及原理,斯托克斯公式及原理。
考试要求
掌握: 二重积分概念,二重积分可积条件。三重积分概念。曲面面积,重心,转动惯量,
引力。第一型曲线积分与第一型曲面积分概念。第二型曲线积分概念。
熟练掌握二重积分的计算:累次积分,换元积分,参量积分求导。三重积分累次积分,换
元积分的计算。理解和掌握:含参变量非正常积分判别方法,分析性质。欧拉积分概念及性
质。熟练掌握第一型曲线积分与第一型曲面积分计算公式,第二型曲线积分计算公式,第二
型曲面积分计算公式。格林公式,路径无关定理。高斯公式及原理,斯托克斯公式及原理。
参考教材《数学分析》(第三版),华东师范大学数学系编
中国民航大学

添加中国民航大学学姐微信,或微信搜索公众号“小站”,关注[小站]微信公众号,在小站微信号输入[中国民航大学考研分数线、中国民航大学报录比、中国民航大学考研群、中国民航大学学姐微信、中国民航大学考研真题、中国民航大学专业目录、中国民航大学排名、中国民航大学保研、中国民航大学公众号、中国民航大学研究生招生)]即可在手机上查看相对应中国民航大学考研信息或资源

中国民航大学考研公众号 小站公众号

本文来源://m.cratesaway.com/cauc/cankaoshumu_373992.html

推荐阅读